400+4x^2-80x=64x^2

Simple and best practice solution for 400+4x^2-80x=64x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 400+4x^2-80x=64x^2 equation:



400+4x^2-80x=64x^2
We move all terms to the left:
400+4x^2-80x-(64x^2)=0
determiningTheFunctionDomain 4x^2-64x^2-80x+400=0
We add all the numbers together, and all the variables
-60x^2-80x+400=0
a = -60; b = -80; c = +400;
Δ = b2-4ac
Δ = -802-4·(-60)·400
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{102400}=320$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-320}{2*-60}=\frac{-240}{-120} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+320}{2*-60}=\frac{400}{-120} =-3+1/3 $

See similar equations:

| x+20+2x+24=11 | | 2g+3​(-7+3​g)=1-g | | 400+4x^2-80x^2=64x^2 | | 7w-3(4w=8)+11 | | 14x^2+20x+100=0 | | (x-753)/6+6236=7777 | | -2(5=6m)=16=-90 | | 98s^2+50=0 | | 14/x+30=2/x | | 9u^2=63 | | 9y-3=19y-2 | | (5x-535)/50=60 | | -2/3x-4=6 | | 2=-5-7x | | -16t^2-33t-16=0 | | 64x^2=-32x | | (3x+2)(x-2)=(x+6)(3x-8) | | -6x=-4x+15 | | 4y+3(y-1)=2(3y-4) | | X^2-28x+74=0 | | 64=-32x | | 2-4x=-3x+1 | | 8=1.5w-12+8,w | | 3^2x+3-3^x+2-3^x+1+1=0 | | 15x-1=3x-25 | | 5g=3=-12 | | 4(1+.05m)=7m | | 5g+3=12 | | 12=(4+w)w | | 2x2−36=x | | 6w+3=2w+23 | | (3x-17)=(4x-12) |

Equations solver categories